Параллелограмм

Параллелограмм – это четырёхугольник, у которого противоположные стороны параллельны. Если у параллелограмма все углы прямые, то такой параллелограмм называется прямоугольником, а прямоугольник, у которого все стороны равны, называется квадратом.

Все параллелограммы обладают следующими свойствами:

Параллелограмм ABCD

  • противоположные стороны равны:

    AB = CD и BC = DA

  • противолежащие углы равны:

    ABC = ∠CDA и ∠DAB = ∠BCD

  • сумма углов, прилежащих к одной стороне, равна 180°:

    ABC + ∠BCD = 180°
    BCD + ∠CDA = 180°
    CDA + ∠DAB = 180°
    DAB + ∠ABC = 180°

  • в точке пересечения диагонали делятся пополам:

    AO = OC и BO = OD

  • каждая диагональ делит параллелограмм на два равных треугольника:

    ΔABC = ΔCDA и ΔABD = ΔBCD

  • точка пересечения диагоналей – это центр симметрии параллелограмма:

    Точка O – это центр симметрии.

Высота

Нижняя сторона параллелограмма называется его основанием, а перпендикуляр, опущенный на основание из любой точки противоположной стороны, – высотой.

Высота и основание параллелограмма ABCD

AD – это основание, h – высота.

Высота выражает расстояние между противоположными сторонами, поэтому определение высоты можно сформулировать ещё так: высота параллелограмма – это перпендикуляр, опущенный из любой точки одной стороны на противоположную ей сторону.

Площадь

Для измерения площади параллелограмма можно представить его в виде прямоугольника. Рассмотрим параллелограмм ABCD:

Площадь параллелограмма ABCD

Построенные высоты BE и CF образуют прямоугольник EBCF и два треугольника: ΔABE и ΔDCF. Параллелограмм ABCD состоит из четырёхугольника EBCD и треугольника ABE, прямоугольник EBCF состоит из того же четырёхугольника и треугольника DCF. Треугольники ABE и DCF равны (по четвёртому признаку равенства прямоугольных треугольников), значит и площади прямоугольника с параллелограммом равны, так как они составлены из равных частей.

Итак, параллелограмм можно представить в виде прямоугольника, имеющего такое же основание и высоту. А так как для нахождения площади прямоугольника перемножаются длины основания и высоты, значит и для нахождения площади параллелограмма нужно поступить также:

площадь ABCD = AD · BE

Из данного примера можно сделать вывод, что площадь параллелограмма равна произведению его основания на высоту. Общая формула:

S = ah

где S – это площадь параллелограмма, a – основание, h - высота.