Многоугольники

Многоугольник – это геометрическая фигура, ограниченная замкнутой ломаной линией, не имеющей самопересечений.

многоугольники

Звенья ломаной называются сторонами многоугольника, а её вершины – вершинами многоугольника.

Углами многоугольника называются внутренние углы, образованные соседними сторонами. Число углов многоугольника равно числу его вершин и сторон.

Многоугольникам даются названия по количеству сторон. Многоугольник с наименьшим количеством сторон называется треугольником, он имеет всего три стороны. Многоугольник с четырьмя сторонами называется четырёхугольником, с пятью – пятиугольником и т. д.

Обозначение многоугольника составляют из букв, стоящих при его вершинах, называя их по порядку (по часовой или против часовой стрелки). Например, говорят или пишут: пятиугольник ABCDE:

В пятиугольнике ABCDE точки A, B, C, D и E – это вершины пятиугольника, а отрезки AB, BC, CD, DE и EA – стороны пятиугольника.

Выпуклые и вогнутые

Многоугольник называется выпуклым, если ни одна из его сторон, продолженная до прямой линии, его не пересекает. В обратном случае многоугольник называется вогнутым:

выпуклый и вогнутый многоугольник

Периметр

Сумма длин всех сторон многоугольника называется его периметром.

периметр многоугольника

Периметр многоугольника ABCDE равен:

AB + BC+ CD + DE + EA

Если у многоугольника равны все стороны и все углы, то его называют правильным. Правильными многоугольниками могут быть только выпуклые многоугольники.

Диагональ

Диагональю многоугольника называется отрезок, соединяющий вершины двух углов, не имеющих общей стороны.

диагонали многоугольника

Отрезки AC и BE являются диагоналями многоугольника ABCDE.

Единственным многоугольником, который не имеет ни одной диагонали, является треугольник.