Иррациональные выражения

Выражения, содержащие корень, который нельзя извлечь, называются иррациональными или радикальными.

Примеры:

иррациональные (радикальные) выражения – иррациональные выражения

Сложение и вычитание

При сложении или вычитании иррациональных выражений их пишут одно за другим с сохранением их знаков.

Примеры:

В некоторых случаях с помощью преобразования можно сделать иррациональные выражения подобными, то есть имеющими одинаковые показатели корней и подкоренные числа (или выражения), а затем сделать приведение.

Примеры:

Умножение и деление

При умножении иррациональных выражений с одинаковыми показателями корней перемножаются их подкоренные числа или выражения:

При делении иррациональных выражений с одинаковыми показателями корней подкоренное число или выражение делимого делится на подкоренное число или выражение делителя:

Примеры:

Возведение в степень

Чтобы возвести в степень иррациональное выражение, следует возвести в степень подкоренное число или выражение:

Примеры:

При возведении в n-ю степень знак корня отбрасывается, так как возведение числа (или выражения) в n-ю степень и извлечение из него корня n-ой степени – это взаимно сокращающиеся действия:

Извлечение корня

Чтобы извлечь корень из иррационального выражения, следует показатели корней перемножить:

, так как

Пример:

С помощью таких преобразований можно упростить извлечение корней 4-й, 6-й, 8-й, 9-й и т. п. степеней из чисел.

Примеры:

Сокращение корней

Величина иррационального выражения не изменится, если показатель корня и подкоренного выражения умножить или разделить на одно и то же число:

так как извлечение корня и возведение в степень – это взаимно сокращающиеся действия, если их показатели равны.

На этом свойстве основано сокращение корней и приведение их к одному показателю.

Сокращение корней – это деление показателей корня и подкоренного числа (или выражения) на одно и то же число, если оно является общим множителем для всех показателей.

Примеры:

Приведение корней к одному показателю

Приведение корней к общему показателю имеет большое сходство с приведением дробей к общему знаменателю. Рассмотрим два способа:

  1. Показатели корней не имеют общих множителей. В этом случае показатель каждого корня и его подкоренное число (или выражение) умножают на произведение остальных корней.

    Рассмотрим три выражения:

    ,

    так как у данных показателей нет общего множителя, то просто перемножаем все показатели между собой, полученный результат и станет общим показателем. После приведения к общему показателю выражения будут иметь следующий вид:

  2. Показатели корней имеют общий множитель. В этом случае надо найти НОК показателей и умножить показатель каждого корня на недостающий множитель.

    Рассмотрим два выражения:

    ,

    НОК (4, 6) = 12, значит для первого выражения дополнительным множителем будет 3, а для второго 2. После приведения к общему показателю выражения будут иметь следующий вид:

При умножении и делении иррациональных выражений с разными показателями, их приводят к общему показателю, а затем уже умножают или делят их подкоренные числа или выражения.

Примеры: